

ORAN - Impact on Telecom Eco-system

Rajesh Singh VIL - EVP Radio Technology

Agenda

• Overview

• Impact Areas

OpCo Expectations

Technology Evolution

ORAN Enablers

OpenRAN Drivers

Open Interfaces in Mobile networks

• ORAN introduced concept of open Interfaces to the Radio Access Network.

Radio Network Architecture evolution with ORAN

• Classical & ORAN implementations will co-exists in a network

ORAN Impact on Network Eco-System

Impact Areas - SRAN

- Single multi-purpose platform which support multiple technologies in the same Hardware simultaneously.
- This is applicable for both Radio and Digital infrastructure at a sites.
- In India, Multiple technologies exists at a site in the same band
- For e.g in 900 MHz , LTE , 2G , NR , NB-IoT etc.
- Current nature of oRAN products mostly support single technology like NR or LTE.
- Adding a radio for single technology only would not be a efficient and economical mode.

Source: Nokia

Impact Areas - Synchronization

- Cellular technologies relies heaving on the Synchronizations between the nodes.
- In 4G & 5G both Freq and Phase synchronization is required
- It is often delivered in traditional networks with GPS and PTP servers.
- Largely this is different from the typical cloud servers and thus regular solution in IT world cannot be adopted for this.
- Synchronization approaches shall be similar to what is available in traditional networks to provide KPIs.

Impact Areas - Interoperability

- With ORAN there are many integration touch points with various vendors
- As an example , just for DU there are so many vendors involved to get a working DU
- There are similar things for RU , RIC , CU etc

 Need for few Pre-identified configurations are must to start for OpCos

- Server Chassis Vendor A
- NIC card Vendor B
- Processor Chipset Vendor C
- GPS Vendor D or
- Cell Site Router Vendor E
- Accelarator Card Vendor F
- FrontHaul Card Vendor G
- IP 65 cabinet

Impact Areas - Transport

- With different topologies the transport requirements becomes more important
- Best optimizations are possible when there is pooling of the resources which can be done. i.e DU & CU together. This
 however poses extreme requirements on the FrontHaul between the cell sites and CU locations.
- This is not always possible and may only be possible for the some sites.
- The oRAN deployment options would be influenced by the transport architecture.

Impact Areas - Security

- All servers are connected like DU , CU
- IP Security of the nodes may be an area of interests in oRAN deployment.
- With openStack usages the need for baseline security needs to be applied to the Radio sites as well.
- Different interfaces and the mechanisms impact the security approaches.

Interface	Between nodes	Security mechanism	Specified by
E1	O-CU-CP and O-CU-UP	NDS/IP (IPSec) or DTLS	3GPP
Xn	Source gNB and Target gNB	NDS/IP (IPSec) or DTLS	3GPP
Backhaul	O-CU-CP and 5GC (N2) O-CU-UP and 5GC (N3)	NDS/IP (IPSec) or DTLS	3GPP
Midhaul (F1)	O-CU-CP and O-DU (F1-C) O-CU-UP and O-DU (F1-U)	NDS/IP (IPSec) or DTLS	3GPP
Open Fronthaul (M-Plane)	O-RU and O-DU/SMO	SSHv2, TLS	O-RAN WG4
Open Fronthaul (CUS-Plane)	O-DU and O-RU	Work in progress (Dec 2020)	O-RAN WG1 STG
01	SMO and O-RAN Managed elements	Work in progress (Dec 2020)	O-RAN WG1 STG
E2	Near-RT RIC (xAPPs) and O-CU-CP	Work planned (1Q21)	O-RAN WG1 STG
A1	Near-RT RIC and Non-RT RIC	Work planned (1Q21)	O-RAN WG1 STG
02	SMO and O-Cloud	Work planned (2Q21)	O-RAN WG1 STG

Key Expectations of OpCos

Be a realistic competition.

Products

Functionalities

- Feature Parity with traditional suppliers
- CAPEX reduction & Better TCO
- SRAN functionality
- Plug & play functionalities of various HW components for DU & Radios
- HW & OS agnostic SW
- High capacities
- Concurrent support of 4G/5G on Radio,DU
- 64T64R products for maMIMO.
- Scale of Economics
- TDD functionalities

- DSS 4G & 5G
- RIC / SON functionalities
- Dual IPv6 & IPv4
- NB-IoT

ORAN Architecture Challenges

Thanks